Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thiol Based Redox Signaling in Plant Nucleus.

Identifieur interne : 000203 ( Main/Exploration ); précédent : 000202; suivant : 000204

Thiol Based Redox Signaling in Plant Nucleus.

Auteurs : Laura Martins [France] ; José Abraham Trujillo-Hernandez [France] ; Jean-Philippe Reichheld [France]

Source :

RBID : pubmed:29892308

Abstract

Reactive oxygen species (ROS) are well-described by-products of cellular metabolic activities, acting as signaling molecules and regulating the redox state of proteins. Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and their redox state affects structural and biochemical capacities of many proteins. While thiol redox regulation has been largely studied in several cell compartments like in the plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent works have revealed that proteins with oxidizable thiols are important for the regulation of many nuclear functions, including gene expression, transcription, epigenetics, and chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different nuclear subcompartments, further supporting that thiol-dependent systems are active in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field, taking examples of redox regulated nuclear proteins and focusing on major thiol redox systems acting in the nucleus.

DOI: 10.3389/fpls.2018.00705
PubMed: 29892308
PubMed Central: PMC5985474


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thiol Based Redox Signaling in Plant Nucleus.</title>
<author>
<name sortKey="Martins, Laura" sort="Martins, Laura" uniqKey="Martins L" first="Laura" last="Martins">Laura Martins</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Trujillo Hernandez, Jose Abraham" sort="Trujillo Hernandez, Jose Abraham" uniqKey="Trujillo Hernandez J" first="José Abraham" last="Trujillo-Hernandez">José Abraham Trujillo-Hernandez</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29892308</idno>
<idno type="pmid">29892308</idno>
<idno type="doi">10.3389/fpls.2018.00705</idno>
<idno type="pmc">PMC5985474</idno>
<idno type="wicri:Area/Main/Corpus">000234</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000234</idno>
<idno type="wicri:Area/Main/Curation">000234</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000234</idno>
<idno type="wicri:Area/Main/Exploration">000234</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thiol Based Redox Signaling in Plant Nucleus.</title>
<author>
<name sortKey="Martins, Laura" sort="Martins, Laura" uniqKey="Martins L" first="Laura" last="Martins">Laura Martins</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Trujillo Hernandez, Jose Abraham" sort="Trujillo Hernandez, Jose Abraham" uniqKey="Trujillo Hernandez J" first="José Abraham" last="Trujillo-Hernandez">José Abraham Trujillo-Hernandez</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reactive oxygen species (ROS) are well-described by-products of cellular metabolic activities, acting as signaling molecules and regulating the redox state of proteins. Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and their redox state affects structural and biochemical capacities of many proteins. While thiol redox regulation has been largely studied in several cell compartments like in the plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent works have revealed that proteins with oxidizable thiols are important for the regulation of many nuclear functions, including gene expression, transcription, epigenetics, and chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different nuclear subcompartments, further supporting that thiol-dependent systems are active in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field, taking examples of redox regulated nuclear proteins and focusing on major thiol redox systems acting in the nucleus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29892308</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Thiol Based Redox Signaling in Plant Nucleus.</ArticleTitle>
<Pagination>
<MedlinePgn>705</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.00705</ELocationID>
<Abstract>
<AbstractText>Reactive oxygen species (ROS) are well-described by-products of cellular metabolic activities, acting as signaling molecules and regulating the redox state of proteins. Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and their redox state affects structural and biochemical capacities of many proteins. While thiol redox regulation has been largely studied in several cell compartments like in the plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent works have revealed that proteins with oxidizable thiols are important for the regulation of many nuclear functions, including gene expression, transcription, epigenetics, and chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different nuclear subcompartments, further supporting that thiol-dependent systems are active in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field, taking examples of redox regulated nuclear proteins and focusing on major thiol redox systems acting in the nucleus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martins</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trujillo-Hernandez</LastName>
<ForeName>José Abraham</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reichheld</LastName>
<ForeName>Jean-Philippe</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ROS</Keyword>
<Keyword MajorTopicYN="N">glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">nucleus</Keyword>
<Keyword MajorTopicYN="N">thiol</Keyword>
<Keyword MajorTopicYN="N">thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29892308</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.00705</ArticleId>
<ArticleId IdType="pmc">PMC5985474</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2007 Nov;52(4):640-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17877712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1734-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27288360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 18;455(7211):411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Nov 16;45(20):11891-11907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 Jan;14(1):237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25316711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2014 Oct;75 Suppl 1:S3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26461333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 May;82:22-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25656994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Dec 1;30(23):5036-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2018 Aug;80:3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28733165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Oct 22;11(10):e1005559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26492035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2448-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Aug 7;10 (8):1107-1125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Aug 10;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28699398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(14):4017-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2014 Sep;14 (17-18):2047-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25044606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Jan;7(1):187-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 10;287(33):27510-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2056-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21960138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 20;8:1815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29104584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Dec 20;27(18):1505-1519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28457165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Mar;36(4):1163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jan 3;272(1):563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8995298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 4;285(23):17417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Apr;167(4):1643-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25699589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:459-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17288534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:715-748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28441057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Oct 15;431(2):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20874710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Feb;4(2):262-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1305-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24180689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1864(8):952-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26861774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2016;13(4):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26980300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 12;306(5699):1183-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1271-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24328795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Oct;67(18):5291-5300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27531885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Feb;21(2):429-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1665-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 26;8:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1720-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27246095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1492-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1817-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Oct;57(10 ):2221-2231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27585463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):452-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jun;174(2):956-971</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28381499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2018 Feb 13;22(7):1657-1665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29444421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Oct 2;56(1):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25201412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Feb 27;315(1):240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15013452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(10):2923-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25750423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9200-9205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28784763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(5):790-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18036205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Oct 20;19(12):1305-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23541030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(5):825-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21105929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 May 15;70(10 ):4214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Feb;243:84-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26795153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Dec 1;45(21):12241-12255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Feb 27;5:8625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jun;46(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Sep;238:115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26259180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 23;479(7373):415-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22020279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jun;90(5):856-867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27801967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1124-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Aug;1850(8):1479-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25676896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 30;10(4):e0124887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25928219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 12;4:450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24282406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23671085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Sep 18;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28816061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 23;479(7373):419-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22020282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jun 29;8(1):49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28663550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 3;279(36):37878-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15237103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):436-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Feb;173(2):1434-1452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27980017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14474-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jun 13;133(6):978-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18555775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25049418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Aug;98(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Nov 1;467(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23210597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jul;217(3):392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14520565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(10):3728-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2015 Jul 6;34(1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26120031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 12;286(32):27863-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21719700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 May;39(5):951-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26264148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):4135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Apr;132(7):1555-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):333-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Feb;38(2):266-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24329757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:143-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19659441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):1073-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Oct;10(8):945-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22762155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2013 May;148(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23167298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2018 Mar 2;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29496616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2008 Sep;29(9):1831-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Mar 12;589(6):718-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25666709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):211-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):1151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24668746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Apr;1844(4):810-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24583075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jan;233(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20872269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1356-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24182193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2010 Oct;246(1-4):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20186447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1535-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27385820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Jan;7(1):30-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2017 Nov;112:36-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28705657</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Perpignan</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Martins, Laura" sort="Martins, Laura" uniqKey="Martins L" first="Laura" last="Martins">Laura Martins</name>
</region>
<name sortKey="Martins, Laura" sort="Martins, Laura" uniqKey="Martins L" first="Laura" last="Martins">Laura Martins</name>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<name sortKey="Trujillo Hernandez, Jose Abraham" sort="Trujillo Hernandez, Jose Abraham" uniqKey="Trujillo Hernandez J" first="José Abraham" last="Trujillo-Hernandez">José Abraham Trujillo-Hernandez</name>
<name sortKey="Trujillo Hernandez, Jose Abraham" sort="Trujillo Hernandez, Jose Abraham" uniqKey="Trujillo Hernandez J" first="José Abraham" last="Trujillo-Hernandez">José Abraham Trujillo-Hernandez</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000203 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000203 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29892308
   |texte=   Thiol Based Redox Signaling in Plant Nucleus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29892308" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020